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Abstract—Multicontoured and reconfigurable beam space-
craft antennas rely on sophisticated beam forming networks
(BFN). Accurate and efficient CAD tools are required to meet
the stringent requirements “on the power division, while avoid-
ing any tuning or trimming of the’ BFN. This paper presents
advanced field theoretical techniques for the analysis and op-
timization of microwave beam forming networks realized in
both waveguide and square coaxial cable technologies. Such
advances consist in new segmentation techniques of the micro-
wave components associated with efficient mode-matching for-
mulations for the modeling of isolated as well as coupled dis-
continuities. The achieved numerical efficiency allows
sophisticated synthesis procedures, based on repeated full-wave
analysis in wide frequency bands, to be performed on small
machines such as a 386 PC. The design tools developed have
been widely validated through a comprehensive test campaign.

I, INTRODUCTION

T

HE USE in communication satellites of contoured and

reconfigurable beam antennas has required the devel-

opment of rather complex Beam Forming Networks (BFN)

to generate the necessary amplitude and phase distribution

on the feed elements. In many cases most of the com-

plexity, cost and weight of the antennas is accounted to

the BFN that requh-es skilled expertise to develop high

quality and low cost products. The ultimate antenna per-

formances in fact is strictly related to the illumination ac-

curacy of the reflector in the operational frequency band

and temperature range.

Historically, most of the early developments belong to

the C-band where the need of generation of highly recon-

figurable and shaped beams has driven the technology of

the BFN towards new solutions that allow a high degree

of packaging otherwise not implementable with tradi-

tional waveguide technologies. These BFN make use of

nearly square coaxial lines well suited for those applica-

tions where numerous feeds have to be interconnected

within a limited volume. Fig. 1(a) shows an experimental

BFN realized for the 3.7-4.2 GHz band, using the tech-

nology of Rectangular Coaxial Lines (RCL).
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Fig. 1. (a) C-band BFN in RCL technology, developed by RYM$A for
Alenia Spazio under an ESA 4(European Space Agency) contract (Courtesy
of Alenia Spazio). (b) Ku-band BFN in rectangular waveguide technology,
developed by Alenia Spazio. (Courtesy of Alenia Spazio).

In the Ku-band and above, the BFN’s are usually im-
plemented in waveguide technology which is a good com-
promise among electrical performance, mass and cost. A
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waveguide BFN for the 10.95– 12.75 GHz band is shown
in Fig. 1(b).

The BFN represents the heart of the antenna system. It
has to generate the complex excitations necessary to shape
the radiation pattern. It consists of a number of power
dividers and fixed phase shifters to adjust the phase of the
signal at each feeding element. Key requirements for the
BFN are wide band operation (up to 35% ), high precision
power division (typically 0.5 dB in amplitude and 50 in
phase), high power capability (about 300 W CW) and re-
liable technology for space environment.

To this end, accurate and efficient CAD techniques are
of paramount importance. To attain the degree of accu-
racy required, the design must be based on rigorous field-
theory techniques. Parasitic reactance and reactive cou-
plings between discontinuities affect significantly the
electrical performances of the components. Numerical ef-
ficiency of the algorithms is also very important as nu-
merical optimization based on a large number of repeated
computer analyses is to be applied. The ultimate objective
is the availability of CAD tools which allow one to design
the entire BFN avoiding any trimming and tuning, with
obvious advantage in terms of cost and development
schedule.

The aim of this paper is to provide a state-of-the-art
description of the electromagnetic tools developed for the
computer-aided analysis and optimization of microwave
components for modem BFN. These tools’ have been de-
veloped for personal computers and have been widely val-
idated through a comprehensive test campaign.

Computational techniques discussed here are based on
the mode-matching (MM) method [1]. Though MM is a
quite efficient numerical method, the computer effort for
the analysis and mainly the optimization of complicated
structures is still too high. Optimization procedures re-
quire in fact hundreds or thousands repeated analyses at
all frequency points of interest. Various techniques have
been devised in order to reduce the computational effort
still providing an extremely high accuracy.

The CAD of a complicated microwave component con-
sists basically of the following steps:

i) segmentation of the structure into elementary cells
or discontinuities;

ii) modeling of elementary cells or discontinuities in
terms of a generalized multiport description;

iii) analysis of the overall equivalent network that re-
sults from the electrical connection of the individual mul-
tiport circuits.

The efficiency of the CAD technique can be improved’
by reducing the complexity of the overall equivalent net-
work by proper segmentation techniques, andior by re-
ducing the complexity of the individual multiports by
suitable modifications of the MM description. These as-
pects are specifically addressed in this paper.

The generalized multiport description of elementary
waveguide discontinuities based on conventional MM
technique is presented first (Section II). The improve-
ments that are obtained by modified MM technique are

then discussed in Section HI, while Section IV is devoted
to the segmentation techniques for complicated structures
and devices. RCL’s can be viewed as special cases of
waveguide structures, and the analysis of both, uniform
and discontinuous RCL’s is illustrated in Section V.

Design examples of waveguide components such as
multiport branch guide couplers and phase shifters, and
of RCL configurations, are presented in the last Section,
showing ,excellent accuracy of the simulated responses
obtained with a relatively low computer effort.

II. WAVEGUIDEDISCONTINUITIES

The CAD technique adopted in this paper is based on
the application of the Mode-Matching (MM) method or
modal analysis [1]. Modifications of the method are im-
plemented in a number of cases in order to improve its
efficiency, i.e., improve the numerical accuracy while re-
ducing the computer effort. It should, be mentioned that,
while the modal analysis of single discontinuities is a
standard and relatively simple technique, its application
to complicated components is not so obvious. Different
formulations can be used both for modeling isolated dis-
continuities and for analyzing microwave structures
through segmentation techniques. Considerable improve-
ments in the numerical efficiency can be obtained apply-
ing the appropriate technique. ,“

The basic approach to waveguide discontinuity prob-
lems consists of expanding the electromagnetic (EM) field
existing in a waveguide ‘‘~” into a set of normal modes.
Using expansions in TE-to-z (or TE(Z)) and TM-to-z (or
TM”) ) modes, the following expressions for the field
components transverse to z can be used [2]:

EA, = ~ VAn(z) eAn (x, y)
n

HA, = ~ Z~.(z) h~. (x, y) (1)
n

where the transverse eigenvectors are related by

h*. = Z. ~ e*~ (2)

for both TE ‘z)and TM ‘z)modes. For practical reasons, the
above series have to be truncated to a finite number of
terms, say N~. The higher NA the more accurate the field
representation and the higher the numerical effort. Trun-
cating the series is a critical point in the application of
MM technique. This will not be discussed here. The in-
terested reader is referred to [3], [4].

The eigenvectors for the electric and magnetic fields
satisfy the orthonormalization, condition

1
e~. “ eA~dS =

!
h~. “ h~~ dS

s s

.
s

e~~ X hA~ “ zOdS = b~. (3)
s

S being the waveguide cross section, 6~. is the Kronecker
delta. The first term in (1) corresponds to the dominant
TEIO mode of the rectangular waveguide.
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The EM field at any, cross section z is determined by
the expansion coefficients VA.(z) and Z~n(z) (n = 1, 2,
“ s “ ). These have the general form

VA.(z) = Vine ‘JB”Z+ V~ne ‘J6”Z

where Y~. is the wave admittance of the mode and ~. its
propagation constant,

P.=- (5)

kOis the free space wavenumber and k~~ the mode eigen-
value.

In the analysis of discontinuity problems, different for-
mulations are obtained depending on how the expansion
coefficients are expressed. Assuming the wave amplitudes
V-}, V- (apart from normalization coefficients) as un-
knowns, a scattering matrix type formulation is obtained.
This leads to the Generalized Scattering Matrix (GSM)
[5]]technique, but-other formulations are possible. A gen-
emlized impedance or admittance matrix model is ob-
tained using V and Z as unknowns.

The MM analysis of typical waveguide discontinuities
and junctions occurring in the realization of BFN’s is de-
scribed in the next subsection. Both isolated and interact-
ing discontinuities are considered, and the relevant appro-
priate models are discussed.

A. Step Discontinuity

‘The junction between waveguides with different cross
section is the simplest discontinuity that can be analyzed
by MM technique. We consider here the case when one
cross section is entirely contained in the other (boundary-
reduction or boundary-enlargement type).

‘Three types of steps can occur in rectangular wave-
guide technology, namely the E-plane, the H.-plane and
the double plane step. For the sake of brevity, the same
folmal treatment is given here for all cases. Considerable
simplification is obtained in practice, when a change in
one plane only occurs, since a reduced set of modes is
sufficient for the field expansion. For example, for the E-
plane step the EM field can be represented by the LSE ‘x)
[6, ch. 6] mode spectrum only.

(Consider the cross section view of the step junction
sketched in Fig. 2, where the cross section of the first
waveguide A entirely contains that of the second wave-
guide B.

Using the boundary conditions for the tangential fields
at the junction and the orthonormal properties of the nor-
maJ modes, one obtains the following linear set of equa-
tions for the expansion coefficients V and Zin both wave-
guides [7]:

[VA] = [w] [v~]

[z~] = [w]~[z. ] , (6)

where the vector [V~] contains the V’s expansion coeffi-
cients for the B wavemide evaluated at the iunction dane.

Fig. 2. Waveguide step junction.

etc.. The (NA X lVB) matrix W represents the coupling
between the modes in both waveguides:

Expressions (6) can be viewed as a circuit description of
the step in terms of a (NA + N~) x (NA + N~) hybrid
matrix, N~ and N~ being the number of modes retained in
the field expansions in the respective waveguide.

Different representations, such as the GSM, or the
Z-matrix, can be obtained also, but at the price of addi-
tional computing effort. One matrix inversion of order N~
has to be performed. One obtains in fact:

[1SAAs~~
[s1= -- (8)

LSBASBBJ

with

[SW] = [g] (2[W] [z] [W] T[YA] – [u]) [@]

[SABI = rfil ([w] - [w] [z] ry,l

+ ryjl ) rfil

[s,. ] = 2[@] [z] [W] T[YA] [~]

[s,,] = –[d~][z] ([Y.] + [Yj]) [W] (9)

where

[Yj] = [w] ’[ YA][w]

[ZI = ( ryj] - ryBy’ (lo)

[Y~] = .[Z~] -1 is the diagonal matrix of the characteristic
admittances of the modes in the A guide and [U] is the
unit matrix.

The above equations define the generalized scattering
matrix of the step. Contrary to the conventional S-matrix,
this is a rigorous description that includes the scattering
coefficients of higher order modes. The GSMl can there-
fore account for higher mode interaction between discon-
tinuities placed in close proximity. Different models can
be adopted, as discussed in the next subsections.

,

B. Bi-and n-Furcations

The bifurcation or, more in general, the n-furcation of
a rectangular waveguide is another typical discontinuity
present in the component of a BFN. Fig. 3 shows the bi-
furcation of a waveguide into Nf smaller waveguides,
whose cross sections are entirely contained in the first one.
This problem can be treated by MM technique in quite
the same manner as the step, except Nf smaller waveguideJ L.
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Fig. 3. Bifurcation of a waveguide into Nf = 3 smaller waveguides.

are present instead of one. With the notation of Fig. 3,
the MM equations on the plane of the N-furcation are

rw =m rbcd
rzBcDl= WI’ [zAl (11)

where

‘VBCD]=EI;“BCD]=[I
[~] = [~&’ ~A~ WAD]. (12)

C. Cascaded Steps

The cascade of two steps, with a waveguide section in-
te~osed between them, Fig. 4(a), can be treated by pro-
cessing the individual matrix representations of the dis-
continuities. Fig. 4(b) shows the equivalent multiport
representation of Fig. 4(a), S~Band S~c being the scatter-
ing matrices of the two steps. The waveguide section has
not been taken into account explicitly, since its effects
(phase shifts for propagating modes and attenuations for
evanescent modes) are incorporated into the scattering
matrices of the steps. The overall S-matrix can be com-
puted from the following formulas [8]:

[s~~] = [Sfp] + [Sf;] [s;;] [E] [Sfp]

[S,*] = [Sf:] ([u] + [s;:] [E] [Sf:]) [s;$]

[s~,] = [s;:] [E] [sf~]

[s22] = [s:;] + [s;:] [E] [sf:] [s:f] (13)

[E] = ([u] – [S;;] [sy:])-’ (14)

where the superscripts indicate the discontinuity to which
the S-matrix applies.

The procedure illustrated, although conceptually
straightforward, is computational y poorly efficient. Be-
sides the matrix inversion required in (14), in fact, two

additional inversions are required to compute the individ-
ual S-matrices of the cascaded discontinuities.

A more efficient approach, here called the cellular tech-
nique (CT), was adopted in [7]. In contrast with the point
of view of the GSM, where each discontinuity is modeled
as a multiport network, in the cellular approach the whole
region (’‘cell”) comprised between consecutive discon-
tinuities is modeled as a multiport network that automat-
ically includes the discontinuities. It can be shown that
only one matrix inversion is required to compute the
S-matrix of two cascaded discontinuities [7]. An addi-

(a)

‘m

(b)

Fig. 4. (a) Cascade of two step discontinuities. (b) Equivalent multiport
representation.

tional computational advantage is obtained by adopting a
Y-matrix representation. This does not require any matrix
inversion to model the “cell. ” Combining (6)–(7) for both
AB and BC steps together with the equations for the B
waveguide one obtains

(15)

where W~Band WBCare the coupling matrices (7) for the
AB and BC steps, and [~j] is a diagonal admittance matrix
which relates the voltage vector at port j with the current
vector at port i of the B waveguide. Note that the ‘‘infor-
mation” on the discontinuities is contained into the fre-
quency independent coupling matrices.

The S-matrix of the cell can be computed from (15) by
standard formulas. As pointed out in [7], for lossless
structures the Y-matrix representation involves the use of
a real algebra, while the S-matrix requires a complex al-
gebra. Numerical stability is the advantage of the S-ma-
trix, since the latter has no polar singularities.

D. Junctions and Crossings

The MM technique can be applied also to cases when
several waveguides are connected together at right angles.
For simplicity we consider here only the planar case, i.e.
when the waveguides are connected either in the E or in
the H plane, and all have the same “a” or’ ‘b” dimension
respectively. We also limit our attention to those cases
when the junction region has a simple rectangular shape,
as in Fig. 5. The approach we are going to discuss can be
extended to the general 3-D case.

The cellular approach introduced in Section II-A seems
the most logical choice for the present case. The junction
region can be seen as a cavity with three or four outputs
[9] and can be modeled as a whole multiport network.
Fig. 5(c)–(d) shows the network representation, accord-
ing to the cellular technique, of the T-junction and cross-
ing of Fig. 5(a)–(b). Each aperture connecting the cell
(junction region J) to a waveguide is represented by a set
of ports, one for each waveguide mode.
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(a)
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Fig. 5. T- and X-junction geometries (a) and (b) and network representa-
tions (c) and (d).

The EM field in the cell can be expanded in tern: of

eigenfunctions, the expansion coefficients being ex-

pressed (see below) in terms of the tangential E-field over

the apertures, i.e. the E-field over the cross sections of

the connecting waveguides. In this manner, the general-

ized Y-matrix of the junction is obtained without any ma-

trix inversion.
lJsing a resonant mode expansion [9], any EM field in

the cell can be expressed as follows:

AP
E=: Vxhp

p=] c02/Le — k;

juAp ~
H=; 2 p. (16)

P=I C02W— kP

The hp’s are orthonormalized eigenvectors that are solu-
tions to

V2hp + k;hP = O (17)

in’the volume of the cell, with boundary conditions

n“h=O, nxVxh=O on S.

The hP’s can be divided into two groups:

I Group: V “ h= O”, Vxh*O

II Group: V o h+ O, Vxh=O

(Tlhe eigenvector(s) with zero curl and divergence need
not be included in the present problem. )

‘The eigenvectors for a rectangular cavity are given in
the Appendix.

The expansion coefficien~s (16) are expressed by

NJ P

AP=~
1

nxE. hpdSi=] Si
(18)

Si being the opening connecting the junction region to the
i th waveguide, and NJ is the number of waveguides.

The tangential electric field in (18) is expanded in terms
of waveguide modes, according to (1). Combining (1)
with (16)–( 18) the generalized admittance, matrix of’ the
junction is obtained in the form of a series expansion over
the resonant modes

The ~‘s are coupling coefficients between the resonant
modes and the waveguide modes

~~=i!,Jnxep”hq dS. (20)
s,

The transadmittance in (19) equals the current (H-field)
amplitude of the p th mode in the i th waveguide p~oduced
by a unit voltage (E-field) of the m th mode in the lth
waveguide, while all the other voltages are zero. The cur-
rent of the p th mode in the i th waveguide for a generic
excitation is

In the general case, the series (19) involves a triple sum-
mation (see Appendix), which reduces to a double sum-
mation for planar junctions [10]. For an E-plane junction,
for instance, the first index m is fixed to be equal to 1
because of the TEIO excitation and uniformity of the struc-
ture along the broad side of the waveguides.

III. IMPROVEMENTS IN MM TECHNIQUE

The matrix description of a discontinuity involves a

computer effort which is generally more than required, -

since only a few higher’ order modes excited at the dis-

continuity interact with the external circuit. In the multi-

port model of the discontinuity, all ports corresponding

to the N~ non-interacting modes (the so-called localized
modes [11]) are terminated by matched loads, w“hile only
the remaining ports, corresponding to the N. interacting
modes (accessible modes) are connected to the external
circuit. In the scattering matrix description, the terms cor-
responding to the localized modes are simply discarded,
so that one has to deal with a matrix of size N. instead of
(Nl + N.). In the admittance’ matrix description, the ma-
trix size reduction requires the inversion of a matrix of
size N1. In spite of this additional effort the Y-matrix for-
mulation is still advantageous compared to the S-matrix
[7].

Having recognized that only a few modes are necessa~
for the field description between discontinuities, while a
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high number of modes are required at the discontinuities,
itlooks obvious to further improve the technique by using
a more appropriate set of basis functions to represent the
field at the discontinuity. Using basis functions such as
weighted Gegenbauer or Chebyshev polynomials it is
possible to accommodatethe field singularities at the metal
edges. Such an approach is in common use in the Spectral
Domain Technique and is known to lead to an excellent
approximation of the field with usually not more than two
terms. A detailed treatment of E-plane steps is given in
[12], while a study of the numerical properties for iris
type discontinuities has been accomplished in [4]. With
this technique, the computation of the GSM of the dis-
continuity, which normally involves an inversion of order
N~ (see Section II-A), N~ being the modes at the narrow
size of the discontinuity, is reduced to an inversion of
order 2 x 2 (if 2 basis functions are used).

When the above approach is used jointly with the ad-
mittance matrix formulation of [7], a very fast and elegant
procedure is obtained. With reference to Fig. 4, we can
express the transverse electric fields on the apertures S’i(i
= 1 is Sti~ and i = 2 is S~c) in terms of a complete or-
thonormal set of vector basis functions @$), truncated after
Mi terms,

(22)

The V~~ coefficient maybe regarded as a modified voltage
relative to the m th basis function at port i. It reduces to
the usual voltage concept if waveguide modes are used as
basis functions in (22). The following relation between
conventional and modified voltages at S1 holds:

[J’J = [w~~][v.] (23)

and similarly at S2. The elements of the W matrix are
given by

w~~mm =
!

e~~ . *$) dS. (24)
sl

We introduce now the modified current at the first port

nAm =
I

HA, “ Z. X @:)dS (25)
s!

and similarly for the second port.
Instead of (15), the following matrix relation between

the modified currents and voltages is obtained

[0] = [Y][N’]

with

[ [WBCIIIUa[vw.~] o
[Y] = o

“[[WA,]’ o

0 1[w~~]T
(26)

Notice that the above modified Y-matrix has the same
expression as the conventional one (15) by simply replac-
ing W with W, thus the modal eigenvectors with the basis
functions (22). The modified admittance matrix has all the
basic properties of the Y-matrix except it typically in-
volves only 4 x 4 matrices, so that extremely fast yet
accurate CAD tools can be developed on this basis.

IV. SEGMENTATION TECHNIQUES FOR WAVEGUIDE

COMPONENTS

Waveguide components can be decomposed into ele-

mentary discontinuities, such as those considered above,

and waveguide sections. The analysis of complicated con-

figurations can therefore be reduced to the connection of

the multiport networks representing the constitutive ele-

ments. To this end, several strategies are possible, i.e.

several techniques can be devised to decompose the struc-

ture into a number of elements. In general, the most ob-

vious strategy consists of viewing the overall structure as

the cascade of discontinuities and waveguide sections.
From the point of view of the computer expenditure, how-
ever, such an approach, though simple, is not the most
efficient. One has to bear in mind not only the computer
effort of the analysis, but also that of the optimization
routine. Let us illustrate this point at the example of two
typical waveguide structures. The first is a waveguide
length loaded with a number Ns of E-plane stubs, which
is a generalization of Fig. 4(a). In the example of Fig.
6(a), Ns = 4.

Using the conventional GSM method, Fig. 6(a) is
viewed as the cascade of 2Ns = 8 steps. The analysis
involves 4Ns – 1 = 12 matrix inversions (2Ns for the
steps plus 2Ns – 1 for the cascade). The cellular ap-
proach, on the contrary, looks at Fig. 6a as the cascade
of 2Ns – 1 = 7 cells, 3 of which are waveguide sections.
The S-matrix representation involves 2Ns – 1 = 7 matrix
inversions (though Ns are of larger sites), while the Y-
matrix reduces the effort to Ns = 4 matrix inversions (for
the cascade).

As sketched in Fig. 6(a), however, the structure can be
seen as a cavity with six outputs, four being terminated
by short-circuited stubs. This decomposition corresponds
to the so called transverse segmentation technique (TST)
[13]. The advantage of the TST is apparent from the small
number of constituent multiports, Fig. 6(b). (Observe fur-
ther that the matrix representation for a stub simply con-
sists of a diagonal matrix). The admittance representation
provides an additional notable saving of the computation
time. Recalling that the Y-matrix elements are evaluated
by short-circuiting all ports except one, a mere waveguide
section has to be analyzed for the computation of the ad-
mittance matrix of each cell. For cell No. 1 only the dom-
inant mode has to be taken into account if the reference
planes of the external ports are chosen far enough from
the end stubs. As a consequence, no series expansion is
necessary, but a single term gives the transconductances
between external and internal ports.
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(a)

-

—

(b)

Fig. 6. (a) Longitudinal cross section of a stub loaded waveguide.
Equivalent network corresponding to the transverse segmentation.

I 5

4 8

(b)

sequence, no general equivalent circuit topology of the
structure can be established using the GSM.

As for the previous example of Fig. 6, a great simpli-
fication of both the analysis and the optimization proce-
dures is obtained using the transverse segmentation tech-
nique. Only 6 discontinuities are seen looking into the
transverse direction. ,The equivalent network of Fig. 7(a)
on the basis of the TST is given in Fig. 7(b).

It has been demonstrated [13] that the CPU time re-
quired by the analysis of a 8-port divider is reduced by a
factor of 8 using TST, compared to the GSM.

V. RECTANGULAR COAXIAL LINES (R~L)

The MM techniques described above apply not only to
waveguide discontinuity problems, but also to the analy-
sis of either uniform or discontinuous RCL’S. The MM
techniques to be applied in such cases are briefly de-
scribed in this Section. They can be related to the trans-
verse resonance concept [17].

A. Uniform RCL

Fig. 8 shows the cross sections of RCL configurations
encountered in practical BFN’s. The inner conductor is
located halfway between the top and bottom walls, but in
some parts of the network it may be offset with respect to
the side walls (Fig. 8(b)). Directional couplers also can
be realized using coupled lines (Fig. 8(c)).
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(b) !

Fig. 7. (a) Geometry of an 8 port branch guide coupler. (b) Equivalent
network according to transverse segmentation.

As a further example we consider a multiport divider,
i.e., an 8 port branch guide coupler, shown in Fig. 7(a).
Such a complicated structure can be analyzed adopting
basically three decompositions techniques. Using the con-
ventional GSM [5], [14], [15], [16] this component is seen
as the cascade of several bi- or n-furcations. The complete
an;alysis is obtained by cascading the generalized scatter-
ing matrices of the n- furcations with the connecting uni-
form waveguide sections. In this example, 24 generalized
scattering matrices have to be cascaded. It should be noted
that, during the numerical optimization, the geometry of
the structure has to be modified. and the planes of the
bifurcations are shifted back and/or forward. As a con-

Consider a se~tion-of RCL of length L shorted at both
ends. At a resonance, the line length is a multiple of half
a wavelength; thus the longitudinal phase constant is f? =
nr /L. Ittherefore appears that the phase constants of the
dominant as, well as the higher order modes can be eval-
uated by computing the resonant frequencies (or, better,
the resonant lengths for a given frequency). The resonant
condition for the RCL resonator can be stated looking into
the transverse direction. The cross-section is then seen as
a bifurcation in a rectangular waveguide, and can there-
fore be analyzed using the approach described in Section
II-B .

B. RCL Discontinuities

RCL steps such as those depicted in Fig. 9(a) can be
analyzed by’ MM in the same way as waveguide steps
(Sec. II-A) except the modal eigenvectors in (1) are not
in closed analytical form. Whatever the segmentation,
technique applied to the discontinuities RCL, in fact, the
e’s and h’s in each RCL section are expressed as series
expansions in each subregion.

The analysis of a T-junction, (Fig. 9b), is a much more
difficult task, as this is a multiaxial discontinuity, i.e. a
3-D boundary value problem.

This problem can be attached by applying a 3-D cel-
lular technique to the resonant cavity obtained by adding
shorting planes some distance away from the discontinu-
ity. These planes are located far enough so as not to per-
turb the reactive fields in the proximity of the disconti-
nuity.
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(a) . (b)

‘m
(c)

Fig, 8. Cross-sections of rectangular coaxial line (RCL) used in practical
BFN’s.

@
(a)

(b)

Fig. 9. Step and T junction in rectangular coaxial line.

(a)

(b)

Fig. 10. (a) 3-D Segmentation of a RCL T-junction. (b) Generalized
equivalent network.

The EM field is expanded in terms of resonant modes
of the cells, which are rectangular volume elements (par-
allelepipeds). At the openings between volume elements
the tangential fields are expanded in terms of 2-D basis
functions. Again, the conditions at the interfaces lead to
a homogeneous system of equations in the expansion coef-
ficients. The parameters of the discontinuity are computed
by performing numerically some resonant experiments
with different locations of the shorting planes. The num-
ber of resonant experiments can be made equal to the
number of ports of the discontinuityy. The generalized
equivalent network for analysis of Fig. 10(a) is shown in
Fig. 10(b). In this case, the central conductor has a con-

stant thickness, so that only 4 cells are necessary for ap-
plication of the cellular technique.

An alternative technique consists of solving a source
problem, instead of an eigenvalue problem. The electric
field distribution of the dominant TEM mode is impressed
at the ports of the structure, so that the cavity size has not
to be changed during analysis. This leads to a considera-
ble saving of the computer effort.

Additional information can be found in [18], [19],
where theoretical results computed on 286 PC’s have been
shown to be in excellent with the experiments.

VI. EXAMPLES

The MM techniques described in the preceding Sec-
tions have been applied to a number of components, both
in waveguide and in RCL technology. To show the degree
of accuracy obtainable, some typical examples are given
here.

Let us first make some considerations about the com-
ponent design. Because of the critical requirements on
BFN performances and of the high accuracy of the design,
waveguide components cannot be designed by conven-
tional network synthesis methods. These, in fact, cannot
account for interacting discontinuities and other parasitic
which, particularly for high performance devices, have a
substantial influence on the actual responses. On the other
hand, optimization procedures applied to components
characterized by a large number of parameters are hope-
less without the previous knowledge of a suitable initial
guess. A starting point for the optimization routine can be
found using a simplified model, usually in the form of a
distributed equivalent circuit. In some but not many cases,
this can obtained by classic network synthesis methods
[20] .

In any case, the design is performed basically in the
following steps: i) for each component, a simplified cir-
cuit model is defined which neglects higher order mode
interaction and, possibly, discontinuity effects; ii) a first
synthesis of the entire component is performed on the ba-
sis of the above simplified models using network synthe-
sis methods or numerical optimization; iii) this optimized
model is converted into a waveguide component; iv)
eventually, the dimensions of the component are deter-
mined by a further optimization routine applied to the full
wave model. This accounts for all discontinuity and in-
teraction effects. The experimental response will then be
very close to the predicted one, thanks to the accuracy of
the MM models adopted, as shown by the following ex-
amples.

The first example refers to the design of a waveguide
phase shifter, realized by a waveguide section loaded by
short-circuited stubs in the E-plane [21]–[23]. A first de-
sign can be obtained very easily on an image parameter
basis, by modeling the phase shifter as a periodic trans-
mission line structure. Each cell of the periodic structure
consists of a series stub between two transmission line
sections. This method provides the starting point for the
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Fig. 11. Experimental andtheoretical responses ofa9E-plane stub phase-
shifter in the band 10.95-12.75 GHz. The theoretical response before the
final optimization is shown by the dotted lines.

final optimization. Fig. 11 shows the response (phase shift
and the return 10SS)of a 9-cell phase-shifter designed for
the band 10.95– 12.75 GHz. The computed responses of
the initial guess structure are compared with those after
the final optimization. ‘The measured responses show a
very close agreement with the theory. It is worth noting
that, the first optimization is performed on the few param-
eters (four) of the single cell, -while the final optimization
is performed on the parameters of the whole structure.
Due to the care exerted in selecting the starting point (in
other words the first optimization), a gradient method pro-
cedure can be applied leading to fast and accurate results.
The whole synthesis, including both optimizations, takes
less than twenty minutes on a 386 PC.

The multiport power divider/combiner, realized “in the
form of a 2N-port branch-guide coupler is another impor-
tant component for satellite microwave networks. A sche-
matic view of this component has been shown in Fig. 7(a).
In this example, an 8-port device is shown, consisting of
4 parallel waveguides coupled by 7 branches in the
E-plane. The preliminary design ,of this component can
be made on the basis of a simple transmission line model.
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Fig. 12. Scattering parameters for an 8-port branch guide coupler. Ports
displacement is as shown in Fig. 7(a),

Due to the large number of parameters, it is essential to
reduce the computer expenditure required for the rigorous
analysis of the waveguide structure. To this end, as dis-
cussed in Section IV, the transverse segmentation in as-
sociation with the Y-matrix representation appears the
most efficient method [13]. Observe again in particular
that the structure geometiy changes during theoptimiza-
tion procedure: not only very short distances between dis-
continuities may occur, so that a very high number of ac-
cessible modes must be inclu,ded in the GSM approach,
but also the equivalent circuit itself has to be modified,
leading. to quite involved CAD algorithms. Such draw-
backs are avoided by ‘the transverse segmentation tech-
nique. The equivalent circuit using TST is shown in Fig.
7(b).

Meastired and computed scattering parameters for a
7-brancli 8-port divider designed for the frequency band
10.95-12.75 GHz are shown in Fig. 12. The agreement
in transmission is better than 0.1 dB.

A final example refers to 4-port 2-branch coupler real-
ized with RCL technology. No o~timization routine was
applied. The example has been selected to demonstrate
the accuracy of the computed results, which is again veiy
satisfactory, as shown in Fig. 13.

VII. CONCLUSION

Advanced field theoretical techniques for the analysis
and optimization of microwave beam forming networks
realized in both w’aveguide and square coaxial cable tech-
nologies have been presented. New segmentation tech-
niques of the microwave components associated with ef-
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Fig. 13. Four port, two branches, coupler realized with RCL technology.
The disposition of the ports is shown in the inset.

ficient mode-matching formulations for the modeling of
isolated as well as coupled discontinuities lead to ~ery
high numerical efficiencies. Synthesis procedures can be
performed on small machines such as a 386 PC. The de-
sign tools developed have been widely validated through
a comprehensive test campaign.

APPENDIX

The H-type eigenvectors of (17) for a rectangular cav-
ity of sizes a x b x c along the xyz axes, respectively,
are given by the following expressions:

hx = CAX sin ~ cos ~ cos ~

TABLE I
MAGNETICFIELD EIGENVECTORSIN A PARALLELPIPEDALCAVITY

Ax A, Az

TE
(s # o)

r —
i

TM a –b
o

q,r+o i r

g r
Vxls=o

a i

s—
c

where p, r, s are integer numbers,

J(lq & &
c= —

1

abc dA; + A; + A:

[

1 form=O
6. =

\2 for m # 0.

The A coefficients are quoted in Table I. There are three
cases. The first two correspond to the zero-divergence ei-
genvectors (Group I) and lead to either TE(Z)or TM(Z)so-
lutions. The third case is that of zero-curl eigenvectors
(Group II).
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